Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.503
Filtrar
1.
Sci Total Environ ; 927: 172407, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608910

RESUMO

The escalating expansion of urban subway systems in recent years has accentuated the issue of stray current corrosion within pipeline networks, emerging as a critical concern for urban safety. This paper delves into the intricate interplay between these phenomena, employing data-driven statistical analyses to elucidate the coupling characteristics between subway lines and the occurrence of failures in adjacent buried pipelines. An advanced three-dimensional finite element model was developed for stray current corrosion in pipelines, seamlessly integrating empirical data and physics-based modeling, which is to uncover the spatial nuances and multifaceted impacts on subway pipeline corrosion from both macro and micro perspectives under varying influencing factors. The study unveils a pronounced geographical and functional affinity between urban subway networks and metallic pipeline networks. The coupling attributes between subway systems and pipelines, such as distance, angle, and pipeline-specific characteristics including material and age, assume pivotal roles. The results further emphasize the hierarchical order of influence, with stray current intensity holding the greatest sway, followed by the distance between subway and pipelines, the angle between them, and soil resistivity. This paper offers a comprehensive investigation of the interrelationships and influential factors between subway systems and adjacent pipelines. It contributes to the mitigation and management of stray current corrosion in pipelines induced by nearby rail transit, thereby enhancing the resilience of both subway and pipeline networks within urban areas.

2.
Anal Bioanal Chem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625560

RESUMO

A novel approach using diffusive gradients in thin films (DGT) with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for two-dimensional mapping of elemental solute release at sub-picogram levels during aqueous corrosion of Al alloys is presented. Evaluation of different DGT gels with mixed micro-sized binding phases (polyacrylamide-Chelex-Metsorb, polyurethane (PU)-Chelex-Metsorb, PU-Chelex-Zr(OH)4) demonstrated the superior performance of PU gels due to their tear-proof handling, low shrinkage, and compliance with green chemistry. DGT devices containing PU-Chelex-Zr(OH)4 gels, which have not been characterized for Al sampling before, showed quantitative uptake of Al, Zn, and Cu solutes over time (t = 4-48 h) with higher Al capacity (ΓDGT = 6.25 µg cm-2) than different gels. Application of PU-Chelex-Zr(OH)4 gels on a high-strength Al-Cu alloy (Al2219) exposed to NaCl (w = 1.5%, pH = 4.5, T = 21 °C) for 15 min in a novel piston-type configuration revealed reproducible patterns of Al and Zn co-solubilization with a spatial expansion ranging between 50 and 1000 µm. This observation, together with complementary solid-state data from secondary electron microscopy with energy-dispersive X-ray spectroscopy, showed the presence of localized pitting corrosion at the material surface. Detection limits for total solute masses of Al, Zn, and Cu were ≤0.72 pg, ≤8.38 pg, and ≤0.12 pg, respectively, for an area of 0.01 mm2, demonstrating the method's unique capability to localize and quantify corrosion processes at ultra-trace levels and high resolution. Our study advances the assessment of Al alloy degradation in aqueous environments, supporting the design of corrosion-resistant materials for fostering technological safety and sustainability.

3.
Toxicol In Vitro ; 98: 105816, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604524

RESUMO

Skin corrosion testing is integral to evaluating the potential harm posed by chemicals, impacting regulatory decisions on safety, transportation, and labeling. Traditional animal testing methods are giving way to in vitro alternatives, such as reconstructed human epidermis (RhE) models, aligning with evolving ethical standards. This study evaluates the QileX-RhE test system's performance for chemical subcategorization within the OECD TG 431 framework. Results demonstrate its ability to differentiate subcategories, accurately predicting 83% of UN GHS Category 1A and 73% of UN GHS Category 1B/1C chemicals with 100% sensitivity in corrosive prediction. Additionally, this study provides a comprehensive assessment of the test method's performance by employing nuanced parameters such as positive predictive value (PPV), negative predictive value (NPV), post-test odds and likelihood rations, offering valuable insights into the applicability and effectiveness of the QileX-RhE test method.

4.
Regen Biomater ; 11: rbae027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605854

RESUMO

Poor bone growth remains a challenge for degradable bone implants. Montmorillonite and strontium were selected as the carrier and bone growth promoting elements to prepare strontium-doped montmorillonite coating on Mg-Ca alloy. The surface morphology and composition were characterized by SEM, EDS, XPS, FT-IR and XRD. The hydrogen evolution experiment and electrochemical test results showed that the Mg-Ca alloy coated with Sr-MMT coating possessed optimal corrosion resistance performance. Furthermore, in vitro studies on cell activity, ALP activity, and cell morphology confirmed that Sr-MMT coating had satisfactory biocompatibility, which can significantly avail the proliferation, differentiation, and adhesion of osteoblasts. Moreover, the results of the 90-day implantation experiment in rats indicated that, the preparation of Sr-MMT coating effectively advanced the biocompatibility and bone repair performance of Mg-Ca alloy. In addition, The Osteogenic ability of Sr-MMT coating may be due to the combined effect of the precipitation of Si4+ and Sr2+ in Sr-MMT coating and the dissolution of Mg2+ and Ca2+ during the degradation of Mg-Ca alloy. By using coating technology, this study provides a late-model strategy for biodegradable Mg alloys with good corrosion resistance, biocompatibility. This new material will bring more possibilities in bone repair.

5.
Front Chem ; 12: 1372292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606079

RESUMO

The concentration effect of Tradescantia spathacea (T. spathacea) as corrosion inhibitor of API 5L X52 steel in 0.5 M of H2SO4 was studied here through electrochemical and gravimetric techniques. To achieve it, samples of the material were prepared to be submitted to each of the tests. Results from electrochemical impedance spectroscopy (EIS) showed that there was an optimum concentration of the inhibitor in which is reached the maximum inhibition efficiency, displaying the best inhibition characteristics for this system with a maximum inhibition of 89% by using 400 ppm. However, the efficiency decreased until 40% when the temperature was increased to 60°C. Potentiodynamic polarization curves (PDP) revealed that some of the present compounds of T. spathacea may affect anodic and cathodic process, so it can be classified as a mix-type corrosion inhibitor for API 5L X52 in sulfuric acid. Also, this compound followed an adsorption mechanism; this can be described through a Frumkin isotherm with an adsorption standard free energy difference (ΔG°) of -56.59 kJmol-1. Metal surface was studied through scanning electron microscope, results revealed that by adding inhibitor, the metal surface is protected; also, they evidenced low damages compared with the surface with no inhibitor. Finally, Tradescantia spathacea inhibited the corrosion process with 82% efficiency.

6.
Adv Mater ; : e2401982, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609077

RESUMO

Corrosion activities and biofouling pose significant challenges for marine facilities, resulting in substantial economic losses. Inspired by the "brick&mortar" structure of pearls, a novel nanocomposite coating (Pun-HJTx) with long-lasting anti-corrosion and intelligent antifouling modes is fabricated by integrating a compatible MoS2/MXene heterostructure as the "brick" into a polyurea-modified PDMS (Pun) acting as "mortar". Notably, the presence of multiple hydrogen bonds within the coating effectively reduces the pinholes resulted from solution volatilizing. In the dark, where fouling adhesion and microbial corrosion activities are weakened, the MoS2/MXene plays a role in contact bactericidal action. Conversely, during daylight when fouling adhesion and microbial corrosion activities intensify, the coating releases reactive oxygen species (such as hydroxyl radicals and superoxide ions) to counteract fouling adhesion. Additionally, the coating exhibits multi-source self-healing performance under heated or exposed to light (maximum self-healing rate can reach 99.46%) and proves efficient self-cleaning performance and adhesion strength (>2.0 Mpa), making it highly suitable for various practical marine applications. Furthermore, the outstanding performance of the Pun-HJT1 is maintained for approximately 180 days in real-world marine conditions, which proving its practicality and feasibility in real shallow sea environments. This article is protected by copyright. All rights reserved.

7.
Sensors (Basel) ; 24(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38610470

RESUMO

Steel Plate Cold-Rolled Commercial (SPCC) steel is known to have long-term durability. However, it still undergoes corrosion when exposed to corrosive environments. This paper proposes an evaluation method for assessing the corrosion level of SPCC steel samples using eddy current testing (ECT), along with two different machine learning approaches. The objective is to classify the corrosion of the samples into two states: a less corroded state (state-1) and a highly corroded state (state-2). Generative and discriminative models were implemented for classification. The generative classifier was based on the Gaussian mixture model (GMM), while the discriminative model was based on the logistic regression model. The features used in the classification models are the peaks of the perturbated magnetic fields at two different frequencies. The performance of the classifiers was evaluated using metrics such as absolute error, accuracy, precision, recall, and F1 score. The results indicate that the GMM model is more conducive to categorizing states with higher levels of corrosion, while the logistic regression model is helpful in estimating states with lower levels of corrosion. Meanwhile, high classification accuracy can be achieved based on both methods using eddy current testing.

8.
Sci Rep ; 14(1): 7714, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565635

RESUMO

For the first time, it has been found that the electrochemical performance of the Al-Mg alloy as an anode in alkaline batteries has been markedly enhanced in the presence of CO2 and LiOH as an electrolyte. This work compares the electrochemical performance of an Al-Mg alloy used as an anode in Al-air batteries in KOH and LiOH solutions, both with and without CO2. Potentiodynamic polarization (Tafel), charging-discharging (galvanostatic) experiments, and electrochemical impedance spectroscopy (EIS) are used. X-ray diffraction spectroscopy (XRD) and a scanning electron microscope (SEM) outfitted with an energetic-dispersive X-ray spectroscope (EDX) were utilized for the investigation of the products on the corroded surface of the electrode. Findings revealed that the examined electrode's density of corrosion current (icorr.) density in pure LiOH is significantly lower than in pure KOH (1 M). Nevertheless, in the two CO2-containing solutions investigated, icorr. significantly decreased. The corrosion rate of the examined alloy in the two studied basic solutions with and without CO2 drops in the following order: KOH > LiOH > KOH + CO2 > LiOH + CO2. The obtained results from galvanostatic charge-discharge measurements showed excellent performance of the battery in both LiOH and KOH containing CO2. The electrochemical findings and the XRD, SEM, and EDX results illustrations are in good accordance.

9.
Cureus ; 16(3): e55456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38571818

RESUMO

Background Varied surface coatings have been studied time and again in medical sciences. Whether general or dental, studying the performance of coatings aims to assess their potential to improve the durability and longevity of titanium implants, thereby advancing implant technology for enhanced patient outcomes. Various analytical techniques are utilized to assess the performance of the coating, providing insights into its effectiveness in preventing corrosion. The findings of this evaluation will contribute to our understanding of corrosion mitigation strategies for titanium implants and pave the way for the development of more durable implant materials. This article aims to evaluate the corrosion resistance of an innovative metal compound coating applied over titanium implants.  Materials and methods In this study, a total of 20 medical-grade, commercially pure titanium screws were collected. The dimensions of the titanium screws were 2mm x 7mm. Around 10 of these commercially pure titanium screw samples were used as the control group. Hafnium nitride (HfN) (0.1 M) was mixed with 100% ethanol and stirred using a glass rod for about 48 hours. Then 10 of the implant screw samples were immersed in the prepared sol and sintered at 400o C for two hours. The HfN-coated samples were then used as the test group. The corrosion resistance of both groups was tested using electrochemical impedance spectroscopy and potentiodynamic polarization studies. The Nyquist, Bode impedance, and Bode phase angle plots were obtained and studied.  Results Using the Stern-Geary equation, the corrosion current density was calculated. On analysis, these values indicated that the higher impedance in HfN-coated titanium screws showed higher mean corrosion potential (Ecorr = -0.452 V) and corrosion current density ( icorr = 0.0354 µA/cm2) than the uncoated titanium screws.  Conclusion It was concluded that the corrosion properties of HfN-coated titanium screws had higher impedance and consequently the highest corrosion resistance. This thereby provides a promising scope for further research of this novel metal coating for use in the biomedical sectors, specifically for dental implants.

10.
Sci Rep ; 14(1): 7937, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575677

RESUMO

In the present study, the inhibition performance of some medicinal plants (i.e. Yarrow, Wormwood, Maurorum, Marjoram, and Ribes rubrum) was theoretically and experimentally investigated for mild steel immersed in 1M HCl. In this way, the obtained extracts characterized by Fourier transform infrared spectroscopy (FT-IR) and the electrochemical and theoretical techniques were used to study the inhibition mechanisms of the extracts for the immersed electrode in the acidic solution. In addition, the microstructure of the electrode surface immersed in the blank and inhibitor-containing solutions characterized by field emission scanning electron microscopy (FE-SEM), and Violet-visible (UV-Vis) spectroscopy was used to confirm the adsorption of the compounds on the electrode surface. The obtained electrochemical results revealed that the inhibition performance of the green inhibitors increased by increasing their dosage in the electrolyte. In addition, it was proved that Marjoram plant extract possessed the most inhibition efficiency (up to 92%) among the under-studied herbal extracts. Marjoram extract behaved as a mixed-type inhibitor in the hydrochloric acid solution, and the adsorption process of the extract on the steel surface followed the Langmuir adsorption model. Adsorption of the compounds on the steel surface was also studied using density functional theory (DFT), and it was found that the protonated organic compounds in the extract have a high affinity for adsorption on the electrode surface in the acidic solution.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38558346

RESUMO

Green hydrogen generation technologies are currently the most pressing worldwide issues, offering promising alternatives to existing fossil fuels that endanger the globe with growing global warming. The current research focuses on the creation of green hydrogen in alkaline electrolytes utilizing a Ni-Co-nano-graphene thin film cathode with a low overvoltage. The recommended conditions for creating the target cathode were studied by electrodepositing a thin Ni-Co-nano-graphene film in a glycinate bath over an iron surface coated with a thin copper interlayer. Using a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) mapping analysis, the obtained electrode is physically and chemically characterized. These tests confirm that Ni, Co, and nano-graphene are homogeneously dispersed, resulting in a lower electrolysis voltage in green hydrogen generation. Tafel plots obtained to analyze electrode stability revealed that the Ni-Co-nano-graphene cathode was directed to the noble direction, with the lowest corrosion rate. The Ni-Co-nano-graphene generated was used to generate green hydrogen in a 25% KOH solution. For the production of 1 kg of green hydrogen utilizing Ni-Co-nano-graphene electrode, the electrolysis efficiency was 95.6% with a power consumption of 52 kwt h-1, whereas it was 56.212. kwt h-1 for pure nickel thin film cathode and 54. kwt h-1 for nickel cobalt thin film cathode, respectively.

12.
Heliyon ; 10(7): e27714, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560196

RESUMO

This study examined the effect of traverse speed on the mechanical properties, corrosion-resistance behavior, and microstructure of friction stir-welded A390/10 wt% SiC composites-AA2024 Al alloy joints. The laminar flow of both materials was found to diminish in the stir zone (SZ) when the traverse speed of the tool increased from 40 to 80 mm/min, lowering their mixing rate. Large aspect ratio Si particles are broken by the tool pin-induced applied plastic strain, which turns them into refined equiaxed particles. Their aspect ratio remains unchanged in the SZ, despite their decreasing size. SiC and Si particles progressively come into view when moving from the AA2024 alloy's SZ to the composite workpieces. These changes happen abruptly as traverse speed increases due to the lack of an interfacial layer structure. The advancing side (AS)'s SZ grain size drops from 4.2 ± 0.3 µm to 1.2 ± 0.2 µm as the traverse speed drops from 80 to 40 mm/min. Increased traverse speed from 40 to 80 mm/min will result in a 5.8% decrease in elongation percentage (EP) and 8.4%, 36%, and 10.3% increases in the ultimate tensile strength (UTS), corrosion resistance, and yield strength, respectively.

13.
Talanta ; 274: 126026, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38604039

RESUMO

Tracking the variation of Cl- timely within the crevice is of great significance for comprehending the dynamic mechanism of crevice corrosion. The reported chloride ion selective electrodes are difficult to realize the long-time Cl- detection inside the confined crevice, due to their millimeter size or a relative limited lifespan. For this purpose, an Ag/AgCl ultra-micro sensor (UMS) with a radius of 12.5 µm was fabricated and optimized using laser drawing and electrodeposition techniques. Results show the AgCl film's structure is significantly impacted by the deposited current density, and further affects the linear response, life span and stability of Ag/AgCl UMS. The UMS prepared at current density of 0.1 mA/cm2 for 2 h shows a rapid response (several seconds), excellent stability and reproducibility, strong acid/alkali tolerance, sufficient linearity (R2 > 0.99), and long lifespan (86 days). Moreover, combined with the potentiometric mode of scanning electrochemical microscope (SECM), the Ag/AgCl UMS was successfully applied to monitor the in-situ radial Cl- concentration in micro-regions inside a 100 µm gap of stainless steel. The findings demonstrated that there was obvious radial difference in Cl- concentration inside the crevice, where the fastest rise in Cl- concentration was at the opening. The proposed method which combines the UMS with SECM has attractive practical applications for microzone Cl- monitoring in real time inside crevice. It may further promote the study of other localized corrosion mechanism and the development of microzone ions detection method.

14.
Acta Biomater ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570108

RESUMO

Metallic bioresorbable orthopaedic implants based on magnesium, iron and zinc-based alloys that provide rigid internal fixation without foreign-body complications associated with permanent implants have great potential as next-generation orthopaedic devices. Magnesium (Mg) based alloys exhibit excellent biocompatibility. However, the mechanical performance of such implants for orthopaedic applications is contingent on limiting the rate of corrosion in vivo throughout the bone healing process. Additionally, the surgical procedure for the implantation of internal bone fixation devices may impart plastic deformation to the device, potentially altering the corrosion rate of the device. The primary objective of this study was to develop a computer-based model for predicting the in vivo corrosion behaviour of implants manufactured from a Mg-1Zn-0.25Ca ternary alloy (ZX10). The proposed corrosion model was calibrated with an extensive range of mechanical and in vitro corrosion testing. Finally, the model was validated by comparing the in vivo corrosion performance of the implants during preliminary animal testing with the corrosion performance predicted by the model. The proposed model accurately predicts the in vitro corrosion rate, while overestimating the in vivo corrosion rate of ZX10 implants. Overall, the model provides a "first-line of design" for the development of new bioresorbable Mg-based orthopaedic devices. STATEMENT OF SIGNIFICANCE: Biodegradable metallic orthopaedic implant devices have emerged as a potential alternative to permanent implants, although successful adoption is contingent on achieving an acceptable degradation profile. A reliable computational method for accurately estimating the rate of biodegradation in vivo would greatly accelerate the development of resorbable orthopaedic implants by highlighting the potential risk of premature implant failure at an early stage of the device development. Phenomenological corrosion modelling approach is a promising computational tool for predicting the biodegradation of implants. However, the validity of the models for predicting the in vivo biodegradation of Mg alloys is yet to be determined. Present study investigates the validity of the phenomenological modelling approach for simulating the biodegradation of resorbable metallic orthopaedic implants by using a porcine model that targets craniofacial applications.

15.
J Colloid Interface Sci ; 666: 189-200, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38593653

RESUMO

Solid polymer electrolytes (SPEs) have shown great promise in the development of lithium-metal batteries (LMBs), but SPEs' interfacial instability and limited ionic conductivity still prevent their widespread applications. Herein, high-concentration hybrid dual-salt "polymer-in-salt" electrolytes (HDPEs) through formulation optimization were facilely prepared to simultaneously boost ionic conductivity, improve interfacial compatibility, and ensure a wide-temperature-range operation with high safety. An optimized electrolyte (HDPE-0.6) shows negligible corrosion to the aluminum current collector after manipulating the salt ratio of lithium bis(trifluoromethane)sulfonimide and lithium bis(oxalato)borate. In addition, HDPE-0.6 has excellent ionic conductivity (i.e., ∼0.536, ∼0.898, and âˆ¼1.28 mS cm-1 at 0, 30, and 60 °C), approaching 1 mS cm-1 at room temperature. Furthermore, HDPE-0.6 exhibits a high lithium transference number of 0.6 and a high electrochemical oxidation stability potential of > 4.8 V vs. Li/Li+. Additionally, due to the formulation of high-concentration thermally stable lithium salts and the employment of flame-retardant trimethyl phosphate as the solvent, HDPE-0.6 has no safety issues. The resultant LiFePO4|HDPE-0.6|Li cell exhibits high discharge capacity, good rate capability, and excellent cycle stability at extended temperatures of 0, 30, and 60 °C. By coupling theoretical calculations and in-depth X-ray photoelectron spectroscopy, we attribute the excellent cycle stability to the formation of a stable interphase. Moreover, our formulation strategy is suitable for the Na3V2(PO4)3//Na battery when replacing the lithium salts with sodium salts (i.e., sodium bis(trifluoromethane)sulfonimide and sodium bis(oxalato)borate) to yield HDPE-0.6-Na, as demonstrated by excellent cycle stability (e.g., 98.6 % of capacity retention after 300 cycles). Our work demonstrates that the as-developed quasi-solid HDPEs are suitable for LMBs and sodium-metal batteries, and HDPEs can function normally in a wide temperature range.

16.
Materials (Basel) ; 17(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591379

RESUMO

Conventional heat treatment is not capable of converting a sufficient amount of retained austenite into martensite in high-carbon or high-carbon and high-alloyed iron alloys. Cryogenic treatment induces the following alterations in the microstructures: (i) a considerable reduction in the retained austenite amount, (ii) formation of refined martensite coupled with an increased number of lattice defects, such as dislocations and twins, (iii) changes in the precipitation kinetics of nano-sized transient carbides during tempering, and (iv) an increase in the number of small globular carbides. These microstructural alterations are reflected in mechanical property improvements and better dimensional stability. A common consequence of cryogenic treatment is a significant increase in the wear resistance of steels. The current review deals with all of the mentioned microstructural changes as well as the variations in strength, toughness, wear performance, and corrosion resistance for a variety of iron alloys, such as carburising steels, hot work tool steels, bearing and eutectoid steels, and high-carbon and high-alloyed ledeburitic cold work tool steels.

17.
Materials (Basel) ; 17(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591403

RESUMO

The increase in greenhouse gas emissions has led to seawater acidification, increasing the corrosion rate of metal structures in marine applications. This paper indicates that the spraying of four types of coatings, namely Zn, Al, Zn-Al, and Al-Mg, using the arc-spraying technique on steel substrate S235JR, creates effective protective coatings that interact differently with various pH solutions exposed to varying levels of seawater acidification. The study analyses the structural properties of the coating materials using SEM and XRD techniques. Electrochemical parameters are evaluated in solutions with different pH and salinity levels. The results demonstrate that alloy metallic coatings provide excellent resistance to corrosion in low-pH solutions.

18.
Materials (Basel) ; 17(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38591421

RESUMO

The aim of this paper is to present methods for corrosion mitigation in molten salt environments. The corrosion of structural materials depends directly on the redox potential of the salt. When the redox potential of the salt is higher than the standard potentials of the elements constituting the structural materials, corrosion occurs. If the reverse is true, no corrosion is observed. Herein, a methodology for calculating the theoretical potential of a molten salt is provided and compared with experimental measurements. Three ways to mitigate corrosion by modifying the salt redox potential are proposed: (i) using a soluble/soluble redox system; (ii) using a potentiostatic method; and (iii) using an amphoteric compound such as UCl3, TiCl2, or TiCl3. Immersion tests were conducted under the above conditions to validate the methodology.

19.
Materials (Basel) ; 17(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591608

RESUMO

The present work aims to provide corrosion performance data for an additively manufactured Ti6Al4V alloy in saline and polluted environments. The as-received additively manufactured material underwent heat treatment at 850 °C for 3 h to transform the acicular α' microstructure into a lamellar α microstructure. Comparative corrosion assessments were conducted between the heat-treated substrates, the as-received condition, and a conventionally mill-annealed alloy. Potentiodynamic polarization experiments were carried out in saline (3.5 wt.% NaCl) and acid aqueous media ((NH4)2SO4 containing Harrison's solution). The corrosion performance of additively manufactured substrates matched or surpassed that of the conventional alloy in Harrison's solutions while remaining inferior in saline medium, despite forming a thicker passive film. Overall, the XY plane showed better corrosion performance, particularly after the elimination of the acicular α' martensite by the applied heat treatment. The results also suggested that the presence of the coarse ß phase was beneficial in 3.5 wt.% NaCl solution and detrimental in Harrison's solutions, more so in acidified and fluorinated conditions.

20.
Materials (Basel) ; 17(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38591630

RESUMO

Investigations regarding the preparation and durability of cement-based materials applied in specific coastal acid rain environments are scarce, particularly those involving the addition of four auxiliary cementitious materials (ACMs) to cement for modification. To improve the durability of concrete structures in coastal acid rain areas, a systematic study was conducted regarding the preparation of high-strength and corrosion-resistant cement-based materials using ACM systems composed of fly ash (FA), granulated blast furnace slag (GBFS), silica fume (SF), and desulfurization gypsum (DG) instead of partial cement. Through an orthogonal experimental design, the effect of the water-binder ratio, cementitious ratio, and replacement cement ratio on the compressive strength, corrosion resistance coefficient, and chloride ion permeability coefficient of the materials were analyzed and the mix proportions of the materials were evaluated and optimized using the comprehensive scoring method. The results show that implementing a FA:GBFS:SF:DG ratio of 2:6:1:1 to replace 60% of cement allows the consumption of calcium hydroxide crystals generated through cement hydration, promotes the formation of ettringite, optimizes the pore structures of cementitious materials, and improves the compressive strength, acid corrosion resistance, and chloride ion permeability of the materials. This study provides a reference for selecting concrete materials for buildings in coastal acid rain environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...